The nature of the solution (acidic, alkaline (or) neutral) can be represented in terms of either hydrogen ion concentration (or) hydroxyl ion concentration. This naturally explains the pH concept.

In 1909, Sorenson used a logarithmic scale for expressing the H+ concentration. This scale was called “pH”, Where “P” stands for ‘Power’ and ‘H’ for hydrogen ion concentration.

ph concept basics

Sorenson defines pH (pH concept) of a solution as

“ The negative logarithm of hydrogen ions concentration (in moles/liter)”.

Thus,

                                          1

                PH = log ————- = – log [H+]

                                       [H+]

The symbol “P” denotes “negative logarithm of ”.

For a precisely neutral solution at 250C in which the concentration of hydrogen ions is 1.0 X 10-7 M, the pH can be calculated as follows:

                            1

PH =log ————— = log (1.0 X 107)

                     1.0 X 10-7

                                           =log 1.0 + log 107

                                           = 0 + 7.0

                                           = 7.0

The value of 7.0 for the pH of a precisely neutral solution is not an arbitrarily chosen figure. It is derived from the absolute value of the ion product of water at 250 C, which by convenient coincidence is a round number.

Importance of pH


  • Soils of specific pH are required for optimum group growth and better yields of crops.
  • Specific pH values are to be maintained for the biological process and industrial process to occur.
  • Specific pH is also to be maintained by the blood.
  • PH plays an important role in chemical analysis.

Development reason of pH


  • The pH scale was developed taking water as the standard.
  • It is an experimental fact that only 1 mole in 5,50,000,000 moles of water ionizes into a H+ and OH.
  • This is the same proportion as one-gram hydrogen ion in 10,000,000 litres of water.
  • Hence, one litre of water contains 1/10,000,000 (or 1/107 of a gram of H+.
  • For everyday use, only the ‘Power’ figure was used and the symbol pH placed before it.
Biological Significance of pH

Biological Significance of pH and pH Concept


A) Tautomeric forms of purines and Pyrimidines:

Tautomerization is a special type of isomerism where a proton migrates in one direction and covalent bond shifts in the opposite direction within the molecule.

The pH Concept: Basics and Importance

Purine and pyrimidine bases exist different tautomeric forms. They are specific tautomeric at the body PH of nearly 7.4 are essential for the hydrogen bonding of complementary base pairs in the DNA double helices and RNA strands. So this maintains the natural three-dimensional forms of nucleic acid molecules.

B) Isoelectric pH:

PH influences the ionization of ionizable polar groups of amino acids, proteins, nucleic acids, Phospholipids and mucopolysaccharides. At a specific pH called the isoelectric pH of the molecule, each such molecule exists as dipolar zwitterions bearing both anionic acid and cationic groups and minimum net charge. Zwitterions do not migrate in electric fields and precipitate easily by aggregation due to minimum electrostatic repulsion.

C) Isolation of Proteins and Amino acids:

The pH depends on of the charged forms of proteins and amino acids are utilized in separating and isolating them from biological materials by methods such as “ion-exchange chromatography, Paper electrophoresis, and Isoelectrophoresis”.

D) Optimum pH:

By influencing ionized states of proteins, the pH concept affects the ionic and hydrogen bonds which stabilize the three-dimensional structure of proteins.